Plug Flow Internally Recirculating Reactor (PFIR) for Pressurized Chemical Looping

C.J. McIntyre, A. Kokourine, N. Bond, S. Champagne, R.W. Hughes Aug 2021

Hatch - A Global Professional Services Firm

Hatch's strong presence in the mining and metals, infrastructure, and energy sectors globally provides our clients with region-specific technical and business expertise to reach full potential and maximize value

CCUS Landscape

Chemical Looping Concept

Chemical Looping Concept

Chemical Looping Concept

- Combustion technology with inherent separation of CO₂
- Direct contact between fuel and air avoided, O₂ is transferred via an oxygen carrier (OC)
 - Eliminates need for costly ASU or postcombustion capture
 - Can be utilized with gaseous, liquid and solid fuels

Applications:

- Heat, steam, power
- Syngas and hydrogen (via reforming or gasification)

Conventional CL Reactors

Key Gaps Identified at US DOE CCUS Experts' Workshop 2017¹

Goal	Approach
Improve fuel conversion	Fuel reactor concepts with internal or multiple stages
Minimize CAPEX & OPEX	Novel reactor designs, non- mechanical devices for gas-solid flow control
Model reactive two-phase flow in fluid bed reactor systems	Advanced CFD

Hatch Contribution to Solution: PFIR Variant of PCL

- Replace conventional 2-reactor CL system with single PFIR
- Fewer reactors, eliminates external solids transfer, leads to:
 - Lower CAPEX
 - Smaller footprint
 - Less downtime/operational issues
 - Lower rate of OC particle attrition, lower OC makeup
 - Higher circulation rates possible

Hatch PFIR Technology

CA 2951724, US20170120211A1, granted 2017

- Patented Hatch Plug Flow Internal Recirculation (PFIR) fluid bed reactor³
- Can replace 2 or more separate fl. beds and eliminate solids transfer between them, simply and cost effectively
- ✓ Reactor with multiple internal stages
- ✓ Reactor with non-mechanical devices for gas-solid flow control

Collaborative Development with CanmetENERGY-Ottawa

CanmetENERGY

- PCL Process technology
- Process modeling, fluidization expertise
- Lab and piloting at Ottawa facility
- Chemical looping expertise

Hatch

- PFIR Reactor technology
- CPFD Modeling, fluidization expertise
- Commercialization, EPCM, Equipment supply
- Industry expertise

CanmetENERGY-Ottawa Pilot Facility

PFIR Development Methodology

CPFD Barracuda Virtual Reactor®

- Hatch has used CPFD Barracuda® software since 2012
- Multiple fluid bed systems were designed and/or optimized:
 - Bubbling, spouting and circulating FBs
 - Roasters, calciners, dryers, chlorinators and unconventional Reactors
 - Cyclones, classifiers, air slides, feed systems, rotary kilns and spray dryers

Commercial Scale PFIR CPFD

Objective: Determine a technically viable conceptual design of a 100 MW_{th} Commercial scale PFIR unit

Key Performance Indicators

- Particle circulation rate
- Particle mixing
- Particle elutriation
- Off-gas composition

Parameter	Value
Bed aspect ratio (H _{bed} : annulus Width)	2
Fuel reactor size (°)	30
Under flow slot height (% of expanded bed)	5%

Particle Circulation

- Achieved circulation is 2.6 times the minimum target

 Circulation localized to bottom regions of bed

- Angled jet influence reduces in height
- High particle interchange necessary for proper mixing

Particle Mixing

Particle Mass Flux in Z Particle Volume Fraction

- Bed mixing characterized by particle up flow through center, and downflow at the walls
- Central plume is of moderate particle density
- Flow structure is consistent in height indicating a well mixed bed

Next Steps

Results indicate a well functioning commercial scale PFIR unit for PCL. Future work includes:

- -Translating particle mixing into oxygen utilization
- Evaluation of gas conversion
- Addition of heat exchange surfaces
- Design & construction of the pilot scale unit

Acknowledgments

HATCH

CanmetENERGY

C for COMPUTATIONAL PARTICLE FLUID DYNAMICS

- Alex Kokourine
- Andrew Tohn
- Gabriel Gomes
- Kamal Adham
- Sabrina Francey
- Stephen Beckermann

- Amanda Alain
- Emi Luka
- Nicole Bond
- Robert Symonds
- Robin Hughes
- Scott Champagne
- Stephen Montero

- Sam Clark
- Peter Blaser

u Ottawa

- Arturo Macchi
- Poupak Mehrani

+ Thank you

For more information, please visit www.hatch.com

Christopher McIntyre, MASc, EIT Technology Development – Innovation & Commercialization <u>christopher.mcintyre@hatch.com</u>

Citations

[1] T. Niass, J. Kislear, M. Buchanan, J. Svalestuen, A. Park, D. DePaolo, J. Powell, Report of the Carbon Capture, Utilization and Storage Experts' Workshop, US. Department of Energy, CCUS Workshop, September 26-27, 2017

[2] A. Lyngfelt, B. Leckner, T. Mattisson, A fluidized-bed combustion process with inherent CO2 separation; Application of chemical-looping combustion, Chem. Eng. Sci. 56 (2001) 3101–3113. https://doi.org/10.1016/S0009-2509(01)00007-0.

[3] K. Adham, C. Harris, A. Kokourine, Modeling and Process Features of Plug Flow Reactor with Internal Recirculation for Biomass Pyrolysis, J. Chem. Eng. Process Technol. 08 (2017) 353. https://doi.org/10.4172/2157-7048.1000353.